Дан р\б треугольник ABC, высота AD. Рассмотрим получившийся треугольник ADC, угол D - прямой, угол А - 45 градусов, следовательно угол С также 45 градусов (сумма углов в треугольнике - 180 градусов). Тогда получаем, что треугольник ADC - р\б (углы при основании равны), т.е. AD=DC=6. Но так как труг-к ABC также р\б, мы получаем противоречие и делаем вывод, что высота AD совпадает со стороной AB. Имеем: BC=AB = 6. По формуле находим площадь треуг-ка: 1\2 произведения катетов, т.е. получаем 1\2*6*6 = 18.
ответ:24,3 см
Объяснение: Дано: EFTM - прямоугольник;
ЕТ=16,2 см; ∠30°.
Найти: Р (ΔEFO)
1. Рассмотрим ΔЕТМ - прямоугольный.
Катет, лежащий против угла 30°, равен половине гипотенузы.
⇒ ТМ = ЕТ : 2 = 16,2 : 2 = 8,1 (см)
Противоположные стороны прямоугольника равны.
⇒ EF = TM = 8,1 см.
Диагонали прямоугольника равны.
⇒ЕТ = FM = 16,2 см.
Диагонали прямоугольника точкой пересечения делятся пополам.
⇒ FO = OE = 16,2 : 2 = 8,1 (см)
Периметр - сумма длин всех сторон.
⇒ Р (ΔEFO) = FO + OE + EF =8,1 +8,1 + 8,1 = 24,3 (см)