Четырёхугольник можно вписать в окружность в том случае, если сумма противолежащих углов четырёхугольника равна 180 градусов. По условию четырёхугольник вписан в окружность. Значит и сумма противоположных углов равна 180. Отсюда имеем:
115 + х = 180 , > х = 180 - 115 = 65 градусов.
63 + х = 180, > х = 180 - 63 = 117 градусов.
Следовательно, градусные меры остальных углов 4-угольника соответственно равны 65 и 117 градусов. Кроме того, в сумме градусные меры 4 углов 4-угольника дают 360 градусов, что говорит об истинности решения.
ответ: 65 и 117
О - точка пересечения диагоналей.
Тогда АО = СО = 1/2 АС = 5,
ВО = МО = 1/2 ВМ = 8,
прямоугольный треугольник АОВ имеет гипотенузу
АВ = корень(5^2 + 8^2) = корень(89).
И так, сторона ромба корень(89).
По теореме косинусов находим косинус угла
противолежащего основанию в равнобедренном
треугольнике:
АВС
АС^2 = AB^2 + BC^2 - 2AB*BC*cos(ABC)
cos(ABC) = (AB^2 + BC^2 - АС^2) / 2AB*BC
cos(ABC) = (89 + 89 - 100) / (2*89)
cos(ABC) = 39/89.
Аналогично для треугольника АВМ
cos(BAM) = (89 + 89 - 256) / (2*89)
cos(BAM) = -39/89.
ответ: arccos(39/89), arccos(-39/89)