Следовательно угол 1 является частью угла С и, значит угол С> угла 1.
Угол 2-внешний угол треугольникa BDC, поэтому угол 2> угла B
Угол 1 и угол 2 между собой равны (треугольник ADC-равнобедренный)
Угол С> угол 1, угол 1=угол 2, угол 2>угол В следовательно угол С>угол В.
2) первый признак: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника,то такие треугольники равны.
Второй признак: если сторона и два прилежащих к ней угла одного треугольника соответственно равны стророне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны.
Третий признак: если три стороны одного треугольника соответственно равны трем сторонам другого треугольника,то такие треугольники равны.
3)пусть боковая сторона равна 5х
Тогда основание равно 2х
Так как треугольник равнобедренный то вторая боковая сторона тоже равна 5х
Отсюда P=5x+2x+5x=48
12x=48
X=4
Основание равно 2х=2×4=8
Боковая сторона 5х=5×4=20
Рисунок к 1 задаче тоже отправил если нужно будет!
1. В основании правильной треугольной пирамиды - правильный треугольник, а высота проецируется в его центр. SO - высота пирамиды, ОС - проекция SC на плоскость основания, значит ∠SCO - угол наклона бокового ребра к плоскости основания - искомый. ОС - радиус окружности, описанной около правильного треугольника: ОС = АВ√3/2 = 6√3/3 = 2√3. ΔSOC: ∠SOC = 90°, ctg∠SCO = OC / SO = 2√3 / 8 = √3/4
2. Основание правильной четырехугольной пирамиды - квадрат, боковые грани - равнобедренные треугольники. Пусть Н - середина CD, тогда SH - медиана и высота равнобедренного треугольника SDC, ОН - средняя линия ΔADC, ⇒ ОН║AD, ⇒ OH⊥CD. Значит ∠SHO - линейный угол двугранного угла наклона боковой грани к основанию - искомый. Радиус окружности, описанной около квадрата, равен половине его диагонали, значит АС = 8. АС = АВ√2 ⇒ АВ = АС/√2 = 8 / √2 = 4√2 - сторона квадрата ОН = AD/2 = 2√2 ΔSOH: ∠SOH = 90°, cos∠SHO = OH / SH = 2√2/7
3. Sбок = 2πRH = 160π см² ⇒ 2RH = 160 см² ABCD - осевое сечение. Sabcd = 2R·H = 160 см² ABEF - сечение, параллельное оси и отстоящее от нее на 6 см. Так как H = R - 2,то 2R(R - 2) = 160 R² - 2R - 80 = 0 D = 4 + 320 = 324 R = (2 + 18)/2 = 10 см R = (2 - 18)/2 = - 8 - не подходит по смыслу задачи H = 10 - 2 = 8 см Если Н -середина ВЕ, то ОН = 6 см - расстояние от оси до сечения. ΔОНВ: ∠ОНВ = 90°, по теореме Пифагора НВ = √(ОВ² - ОН²) = √(100 - 36) = 8 см ВЕ = 2НВ = 16 см Sabef = BE · H = 16 · 8 = 128 см²
4. ΔАВС - данное сечение - равнобедренный треугольник (АВ = АС = l образующие) ∠АВС = ∠АСВ = 75°, ⇒ ∠ВАС = 30°. Sabc = 1/2 · AB · AC · sin ∠BAC = 16 см² l² · sin30° = 32 l² = 64 l = 8 cм ΔАОВ: ∠ВАО = 30° по условию. cos∠BAO = AO/AB cos30° = h/l ⇒ h = l · cos30° = 8√3/2 = 4√3 см r = OB = AB · sin30° = 8 · 1/2 = 4 см Площадь осевого сечения: Sakc = 1/2 · KC · AO = r · h = 16√3 см² Sполн = πr(l + r) = π · 4 · (8 + 4) = 48π см²
1)дано треугольник АВС, АВ>АС
Доказать: угол С>угла В
Решение:отложим на стороне АВ отрезок AD=AC
Так как AD<AB,то D лежии между А и В.
Следовательно угол 1 является частью угла С и, значит угол С> угла 1.
Угол 2-внешний угол треугольникa BDC, поэтому угол 2> угла B
Угол 1 и угол 2 между собой равны (треугольник ADC-равнобедренный)
Угол С> угол 1, угол 1=угол 2, угол 2>угол В следовательно угол С>угол В.
2) первый признак: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника,то такие треугольники равны.
Второй признак: если сторона и два прилежащих к ней угла одного треугольника соответственно равны стророне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны.
Третий признак: если три стороны одного треугольника соответственно равны трем сторонам другого треугольника,то такие треугольники равны.
3)пусть боковая сторона равна 5х
Тогда основание равно 2х
Так как треугольник равнобедренный то вторая боковая сторона тоже равна 5х
Отсюда P=5x+2x+5x=48
12x=48
X=4
Основание равно 2х=2×4=8
Боковая сторона 5х=5×4=20
Рисунок к 1 задаче тоже отправил если нужно будет!