ав и cd - скрещивающиесярасстояние между скрещивающимися прямыми равно расстоянию от прямой до плоскости, в которой лежит другая прямая.пусть о – середина db1м – середина авом – это и есть расстояние между прямыми ав и db1δ aa1b1, ∠a1=90°по т. пифагораaв1 = √(aa1^2+a1b1^2)=√(2^2+2^2)=√(4+4)=√8=√(4*2)=2√2δ ab1d, ∠а=90°по т. пифагораb1d = √(ad^2+ab1^2)=√(2^2+(2√2)^2)=√(4+8)=√12=2√3b1d: 2=(2√3): 2=√3=doδ amd, ∠а=90°по т. пифагораmd = √(ad^2+am^2)=√(2^2+1^2)=√(4+1)=√5δ mod, ∠o=90°по т. пифагораbo = √(md^2 – od^2)=√((√5)^2+(√3)^2)=√(5+3)=√8=√(4*2)=2√2ответ: 2√2
Для координат векторов справедливы следующие свойства:
1. Каждая координата суммы векторов равна сумме соответствующих координат.
2. Каждая координата разности векторов равна разности соответствующих координат.
3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.
4. Каждая координата вектора равна разности соответствующих координат его конца и начала.