Как проверить существует ли треугольник с данными сторонами? Это легко, по теореме каждая сторона треугольника должна быть меньше суммы двух других сторон. И так, проверяем 52 должно быть меньше, чем 38+72 и это так, 38 должно быть меньше, чем 72+52 и это так, 72 должно быть меньше, чем 38+52 и это так. Вывод:такой треугольник существует. 2) 10 должно быть меньше, чем 115+1203 и это так, 115 должно быть меньше, чем 1203+10 и это так, 1203 должно быть меньше чем 115+10, но это не так. Вывод: такого треугольника не существует. 3) 1003 должно быть меньше, чем 705+276 и это не так. Можно сразу сделать вывод, что данного треугольника не существует.
Для этого надо составить уравнения сторон в виде у = кх + в. У параллельных прямых коэффициенты "к" равны. Сторона АВ: Уравнение прямой: Будем искать уравнение в виде y = k · x + b . В этом уравнении: k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX); b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY. k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4; b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 . Искомое уравнение: y = 4 · x - 14 .
Сторона ВС: k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5; b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 . Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД: k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4; b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 . Искомое уравнение: y = 4 · x + 13 .
Сторона АД: k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4; b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 . Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
52 должно быть меньше, чем 38+72 и это так,
38 должно быть меньше, чем 72+52 и это так,
72 должно быть меньше, чем 38+52 и это так. Вывод:такой треугольник существует.
2)
10 должно быть меньше, чем 115+1203 и это так,
115 должно быть меньше, чем 1203+10 и это так,
1203 должно быть меньше чем 115+10, но это не так. Вывод: такого треугольника не существует.
3)
1003 должно быть меньше, чем 705+276 и это не так. Можно сразу сделать вывод, что данного треугольника не существует.