А1. Дано: ABCD-трапеция ВС=8 см AD=14 см Найти среднюю линию? Решение: Построим отрезок MN-средняя линия трапеции MN=(BC+AD) /2= (8+14)/2= 22/2= 11 см. ответ: 11 см.
А2. Дано: ABCD-трапеция Прямая a || CD ∠ABE = 75°, ∠A = 40°. Чему равен ∠CBE=? Решение: По условию задачи прямая a || CD и проходит основания в точках В и Е => получили треугольник АВЕ, где ∠ABE = 75°, ∠A = 40°. Вычислим ∠AЕВ = 180°-(75°+40°)=180°-115°=65°. Так как ВС || AD и прямая a пересекает их, то прямая а - секущая => ∠AЕВ =∠CBE=65° - внутренние накрест лежащие углы. ответ: ∠CBE=65°
А1. Дано: ABCD-трапеция ВС=8 см AD=14 см Найти среднюю линию? Решение: Построим отрезок MN-средняя линия трапеции MN=(BC+AD) /2= (8+14)/2= 22/2= 11 см. ответ: 11 см.
А2. Дано: ABCD-трапеция Прямая a || CD ∠ABE = 75°, ∠A = 40°. Чему равен ∠CBE=? Решение: По условию задачи прямая a || CD и проходит основания в точках В и Е => получили треугольник АВЕ, где ∠ABE = 75°, ∠A = 40°. Вычислим ∠AЕВ = 180°-(75°+40°)=180°-115°=65°. Так как ВС || AD и прямая a пересекает их, то прямая а - секущая => ∠AЕВ =∠CBE=65° - внутренние накрест лежащие углы. ответ: ∠CBE=65°
1)х²-16=0
х²=16
х1=-4
х2=4
2)2х²-7х
Розкладання на множники - (2х-7)×х
Объяснение:
Успіхів!