Существуют три признака подобия треугольников:
1. до двум равным углам
2. по двум пропорциональным сторонам и углу между ними
3. по трём пропорциональным сторонам
Если мы сумели доказать по одному из этих признаков, что треугольники подобны, то мы можем составить соотношения сторон. Допустим, у нас есть два подобных треугольника, и мы соотносим сторону большего треугольника к такой же стороне меньшего, записываем в виде дроби эти отношения. У треугольника 3 стороны, поэтому получится 3 отношения, которые равны друг другу.
Часто в условии задачи даны измерения нескольких сторон, тогда мы подставляем вместо букв цифры и получаем дробь из чисел. Тогда мы можем поделить одно число на другое, получив как раз коэффициент подобия, о котором вы спрашиваете. Это частное от деления дроби, от деления большей стороны подобного треугольника на меньшую.
Исходя из того, что мы имеем коэффициент подобия, мы должны запомнить, что площади подобных треугольников относятся друг к другу как квадрат коэффициента подобия. То есть, к примеру, в задаче даны 2 треугольника и площадь одного из них, а площадь второго нужно найти. Мы доказали, что треугольники подобны, нашли коэффициент подобия. Теперь это число нужно возвести в квадрат. Коэффициент в квадрате равен отношению площадей подобных треугольников. То есть если мы умножим коэффициент в квадрате на известную нам площадь треугольника, то получим вторую площадь другого треугольника, то есть решим задачу и получим верный ответ.
Зная длину гипотенузы (c) и величину угла (α), лежащего напротив нужного катета (a), используйте в расчетах определение тригонометрической функции синус через острые углы прямоугольного треугольника. Этого определение утверждает, что синус известного из условий угла равен соотношению между длинами противолежащего катета и гипотенузы, а значит, для вычисления искомой величины умножайте этот синус на длину гипотенузы: a = sin(α)*с.
Если кроме длины гипотенузы (с) дана величина угла (β), прилежащего к искомому катету (a), используйте определение другой функии - косинуса. Оно звучит точно так же, а значит, перед вычислением просто замените обозначения функции и угла в формуле из предыдущего шага: a = cos(β)*с.4Функция котангенс с вычислением длины катета (a), если в условиях предыдущего шага гипотенуза заменена вторым катетом (b). По определению величина этой тригонометрической функции равна соотношению длин катетов, поэтому умножьте котангенс известного угла на длину известной стороны: a = ctg(β)*b.5Тангенс используйте для вычисления длины катета (a), если в условиях есть величина угла (α), лежащего в противоположной вершине треугольника, и длина второго катета (b). Согласно определению тангенс известного из условий угла - это отношение длины искомой стороны к длине известногокатета, поэтому перемножьте величину этой тригонометрической функции от заданного угла на длину известной стороны: a = tg(α)*b.