Мне казалось я уже выкладывал решение, но почему-то не могу найти, наверно был особо принципиален в тот момент. Но чертеж сохранился, на нем решение легко просматривается.
На самом деле это всего лишь упражнение на общие свойства инверсии, главное из которых - конформность (то есть сохранение углов). См. чертеж.
Ясно, что прямые OA, OC и OB перейдут в себя, и образы A' B' C' будут лежать на этих прямых (соответственно). При этом прямые AB и BC перейдут в окружности, проходящие через точку O. На чертеже изображены эти окружности OA'B' и OC'B'. При этом углы между касательными к этим окружностям и прямыми-образами (которые совпадают с исходными) сохраняются. То есть если провести касательную в точке B' к окружности OA'B' то угол между ней и прямой OB будет 20° (такой же, как ∠OBA).
=> эта касательная параллельна OA, => дуги OB' и B'A' равны,
=> ∠B'A'O = 20°.
∠OA'C' = ∠OAC = 90° - 20° = 70°
Дальше сосчитать, чему равен ∠B'A'C', совсем просто.
∠B'A'C' = ∠OA'C' - ∠B'A'O = 50°
d^2=a^2+a^2
Подставим значения в формулу:
d^2=6^2+6^2=36+36=72 cm
Высоту h мы найдем с и ребра b:
h=sqrt{{d/2}^2+b^2}
h=sqrt{{{72}/2}^2+5^2}=sqrt{36+25}=sqrt{61}=7,8 cm
Теперь найдем площадь квадрата, который лежит в основании правильной пирамиды:
S=6^2=36{cm}^2
Подставим найденные значения в формулу расчета объема:
V={1/3}*36*7,8=14,6{cm}^3
Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a, то можно найти значение по следующей формуле:
S_bok={1/2}a sqrt{5^2-{{6^2}/4}}=3*sqrt 16}=12
Площадь всей пирамиды равна:
S=4*S_bok + S_osn= 4*12 + 36=84