М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
GlennRee
GlennRee
07.07.2021 02:29 •  Геометрия

Геометрия 7 класс Контрольная работа № 3
Тема контрольной: Параллельные прямые
К-3. Вариант 1
1. Параллельные прямые АВ и CD пересекаются с прямой EF в точках М и N соответственно. Угол AMN на 30° больше угла CNM. Найдите все образовавшиеся неразвернутые углы.
2. Отрезок DM — биссектриса треугольника CDE. Через точку М проведена прямая, пересекающая сторону DE в точке N так, что DN = MN. Найдите углы треугольника DMN, если угол CDE = 74°.
3. ∠1 = ∠2; ∠3 в четыре раза меньше ∠4. Найдите ∠3, ∠4.
4* Из точек A и В, лежащих по одну сторону от прямой, проведены перпендикуляры АС и BD к этой прямой, угол ВАС равен 117°. Найдите величину угла ABD. Докажите, что прямые АВ и CD пересекаются.
К-3. Вариант 2
1. Параллельные прямые АВ и CD пересекаются с прямой EF в точках М и N соответственно. Угол AMN в три раза меньше угла CNM. Найдите все образовавшиеся неразвернутые углы.
2. Отрезок AD — биссектриса треугольника АВС. Через точку D проведена прямая, пересекающая сторону АВ в точке Е так, что АЕ = ED. Найдите величины углов треугольника AED, если угол ВАС равен 64°.
3. ∠1 + ∠2 = 180°; ∠3 на 70°меньше ∠4. Найдите ∠3, ∠4.
4* На сторонах угла А, равного 43°, отмечены точки В и С, а внутри угла — точка D так, что угол ABD равен 137°, угол BDC равен 45°. Найдите величину угла ACD. Докажите, что прямые АВ и DC имеют одну общую точку.​

👇
Открыть все ответы
Ответ:
pupsic3
pupsic3
07.07.2021
Tg C = √3 / √6 = √(3/6) = 1 / √2. Через этот тангенс находим синус С = tg C / (+-√(1+tg²C)) = 1 /(√2*(1+(1/2))) = 1 / √3. Высота в прямоугольном треугольнике АВС равна ha = √6*sin C = = √6*(1 / √3) = √2. Расстояние от точки S до ВС - это гипотенуза треугольника, где один катет SA = 2 см, а второй - высота ha = √2. Отсюда искомое расстояние от точки S до ВС = √(2²+(√2)²) = √6 = = 2,44949 см. Высоту ha можно было найти по другой формуле: ha =2√(p(p-a)(p-b)(p-c)) / a. Для этого надо найти диагональ А = √((√3)²+(√6)²) = √9 = 3 см. А рисунок к этой задаче очень прост - сначала вычертить план треугольника и высоту к гипотенузе, а затем вертикальную плоскость с отрезком SA и высотой ha.
4,6(70 оценок)
Ответ:
Zashas1
Zashas1
07.07.2021
Обозначим через ВК высоту, опущенную на сторону АС.
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.
4,7(77 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ