Найди утверждения, соответствующие данной записи F∉JK. (Правильными могут быть несколько ответов.)
1)ТочкаFне находится на прямойJK 2)ТочкаFявляется точкой прямойJK 3)ПрямаяFпроходит через точкуJK 4)ТочкаFне принадлежит прямойJK 5)ПрямаяJKпроходит через точкуF 6)ПрямаяJKне проходит через точкуF 7)ТочкаFнаходится на прямойJK
а) Доказательство, что AM — биссектриса угла BAC, вытекает из равенства соответствующих углов при параллельных прямых и секущей.
б) Найдите площадь трапеции AMBD , если площадь треугольника ABC равна 216 и известно отношение AC:AB=5:4. Биссектриса АМ делит треугольник АВС на части, пропорциональные отрезкам ВМ и МС, которые в свою очередь пропорциональны сторонам АВ и АС по свойству биссектрисы. S(АМС) = (216*5)/9 = 24*5 = 120 кв.ед. ∆ AMC подобен ∆CBD с коэффициентом подобия k=AC:DC=5:9. Отношение площадей подобных фигур равно квадрату их коэффициента подобия - k²=25/81. S AMC:S BDC = 25/81, откуда S BDC =120•81:25 = 388,8. Тогда S AMBD = S∆BCD - S∆AMC = 268,8.
Высота боковой грани пирамиды равна корню квадратному из суммы квадратов высоты пирамиды и квадрата половины длины стороны основания или √((10:2)²+12²)=√√169=13 (дм) площадь каждой из боковых граней: 13*10/2=65(дм²) площадь боковой поверхности пирамиды: 130*4=260 (дм²) площадь боковой поверхности пирамиды и основания: 260+(10*10)=360 (дм²) ткани необходимо, чтобы сшить саму палатку и ее основание не считая расхода материалов на швы и обрезки.
360:2=180 (дм²)-составляют 50% от необходимого количества ткани 360+180=540 (дм²)ткани необходимо, чтобы сшить саму палатку и ее основание с учетом швов и обрезков
б) Найдите площадь трапеции AMBD , если площадь треугольника ABC
равна 216 и известно отношение AC:AB=5:4.
Биссектриса АМ делит треугольник АВС на части, пропорциональные отрезкам ВМ и МС, которые в свою очередь пропорциональны сторонам АВ и АС по свойству биссектрисы.
S(АМС) = (216*5)/9 = 24*5 = 120 кв.ед.
∆ AMC подобен ∆CBD с коэффициентом подобия k=AC:DC=5:9.
Отношение площадей подобных фигур равно квадрату их коэффициента подобия - k²=25/81.
S AMC:S BDC = 25/81, откуда S BDC =120•81:25 = 388,8.
Тогда S AMBD = S∆BCD - S∆AMC = 268,8.