
Длина основания - 6см, длины боковых сторон - 14см. Доказательство от противного - строим произвольный равнобедренный треугольник ABC с равными сторонами AB и AC. Из вершины А строим высоту AH, которая будет являться так же медианой и биссектрисой. Отсюда получаем, что треугольник ABH=ACH; BH=CH=1/2BC. Предположим, что длина основания BC=14см, то BH=CH=7см, а AB=AC=6см. Найдём синус угла BAH
sin(BAH)=BH/AB=7/6>1
Синус угла не может быть больше 1, значит такой треугольник невозможен. Значит основание BC=6см, а стороны AB=AC=14см. Для проверки можем найти синус того же угла при новых условиях, он будет равен sin(BAH)=3/14, это допустимое значение. Значит основание треугольника - 6см, а боковые стороны - 14см.
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны, что следует из условия. Т.к. ∠А=∠А₁, ∠В=∠В₁, то треугольники АВС и А₁В₁С₁ подобны, а в подобных треугольниках сходственные стороны пропорциональны,
Значит, АВ=А₁В₁=ВС/В₁С₁⇒6/9=8/В₁С₁; В₁С₁=9*8/6=12/см/
6/9=АС/А₁С₁⇒АС=6*18/9=12/см/
Проверим пропорциональность сходственных сторон
АВ/А₁В₁=ВС/В₁С₁=АС/А₁С₁; 6/9=8/12=12/18.
Все отношения после сокращения дают 2/3, значит, найдены неизвестные стороны верно.