Опустим из точки D перпендикуляр DH на основание цилиндра. DH равен высоте цилиндра. Тогда хорда СН по Пифагору равна √(CD²-DH²)=√(25²-7²)=24см. Проведем диаметр АВ параллельно хорде СН. Тогда перпендикуляр ОК и будет искомым расстоянием от отрезка CD до оси цилиндра, так как этот перпендикуляр является расстоянием между двумя параллельными плоскостями СDH (содержащую отрезок CD) и АА'BB' (содержащую ось цилиндра). Отрезок ОК делит хорду СН пополам. Тогда по Пифагору ОК=√(ОС²-СК²)=√(13²-12²)=5см. ответ: расстояние от отрезка CD до оси цилиндра равно 5см.
Пирамида MABCD, основание - прямоугольник ABCD: AD=BC=18 см; AB=CD=10 см; O- точка пересечения диагоналей AС и BD, MO - высота пирамиды. Так как у прямоугольника диагонали равны и точкой пересечения делятся пополам, то OA = OB = OC = OD - это проекции боковых ребер на основание. Проекции наклонных равны, следовательно, наклонные тоже равны : AM = BM = CM = DM - боковые ребра пирамиды. Тогда ΔAMD = ΔBMC - по трём равным сторонам, ΔAMB = ΔDMC - по трём равным сторонам. Проведем KT║AD ⇒ OK=OT=AD/2 = 18/2 = 9 смΔMOT - прямоугольный, теорема ПифагораMT² = MO² OT² = 12² 9² = 144 81=225 = 15²MT = 15 см см²Проведем FG║DC ⇒ OG=OF=DC/2 = 10/2 = 5 смΔMOF - прямоугольный, теорема ПифагораMF² = MO² OF² = 12² 5² = 144 25 = 169 = 13²MF = 13 см см²Площадь боковой поверхности пирамиды см²Sбок = 384 см²Площадь основания см²Площадь полной поверхности пирамиды S = 384 180 = 564 см²