Хорошая задача. Она основана на чрезвычайно важном факте, который я бы включил в число самых главных теорем планиметрии.
Теорема. Пусть окружность касается стороны BC треугольника ABC в точке A' и продолжений сторон AB и AC соответственно в точках C' и B'. Тогда AC'=AB'=p - полупериметр треугольника. Кстати, такая окружность называется вневписанной по отношению к треугольнику.
Доказательство этой теоремы, если вдуматься, почти очевидно. Предлагается получить его самостоятельно. Или оформить в виде отдельного задания, приложив красивый чертеж.
Переходим к основной задаче. Данная окружность, являясь вписанной для треугольника ABC, является также вневписанной для трех маленьких. Поэтому отрезки сторон треугольника ABC от вершин до точек касания равны полупериметрам соответствующих треугольников. А периметр треугольника ABC равен сумме периметров трех маленьких P=18+5+6=29
ответ: 1) Рabcd=22 см 2) Pabcd=32 см
Объяснение:
Дано параллелограмм ABCD. Угла А и С острые. В и D тупые. Тогда:
1) ВК- биссектриса угла В. АК=4 см и КD= см =>AD=BC=4+3=7 см
Так как ВК-биссектриса, то угол АВК=углу СВК.
Угол СВК=АКВ , так как углы СВК и АКВ накрест лежащие и AD II BC
Тогда угол АКВ=АВК => треугольник АВК равнобедренный=> АВ=АК=4 см
АВ=CD=4 cm
=> Pabcd=AB*2+AD*2=4*2+7*2=8+14=22 см
2) АМ- биссектриса угла А ВМ=5 см МС=6 см => BC=AD=5+6=11 см
Далее все аналогично пункта 1.
MAD=BAM, так MAD и BAM накрест лежащие и BC II AD
=> BAM=BMA
=> АВМ- равнобедренный треугольник => AB=BM=5 cm
=>P abcd= 5*2+ 11*2=10+22=32 см