S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
Формула: S=(n-2)\times 180, где S – сумма внутренних углов многоугольника, n – число сторон многоугольника. Цифра «180» – это сумма углов треугольника, а n-2 – это число треугольников, на которые можно разбить многоугольник. Таким образом, формула вычисляет сумму углов треугольников, на которые можно разбить многоугольник. Этот метод применим к правильным и неправильным многоугольникам. Суммы внутренних углов правильного и неправильного многоугольников с одинаковым число сторон равны. Все углы правильного многоугольника равны. Углы неправильного многоугольника имеют разные значения, но их сумма равна сумме углов правильного многоугольника. Например, если дан шестиугольник, то число сторон равно 6. Для того чтобы вичеслить многоугольник из числа сторон вычтите 2, а затем результат умножьте на 180. Вы получите суммe внутренних углов многоугольника (в градусах).
где а и в - основания трапеции
h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2
Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны)
Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2
Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.