А) АВ- диаметр окружности с центром О. Найдите координаты центра окружности, если А (6; -3) и В (-4; -5). б) Запишите уравнение окружности, используя условия пункта а). сделайте кто шарит сейчас СОР а я не могу понять что там делать.
Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
И нахождение острых углов трапеции равносильно нахождению углов при основании синего треугольника
По теореме косинусов для угла Д
35² = 28²+42²-2*28*42*cos∠Д
2*28*42*cos∠Д = 28²+42²-35² = 1323
cos∠Д = 3³*7²/(2*4*7*2*3*7) = 3²/16 = 9/16
∠А = ∠Д = arccos(9/16) ≈ 55,77°
∠Б = 180-∠А = 180-arccos(9/16) ≈ 34,23°
По теореме косинусов для угла Г
28² = 35²+42²-2*35*42*cos∠Г
2*35*42*cos∠Г = 35²+42²-28² = 2205
cos∠Г = 3²*5*7²/(2*5*7*2*3*7) = 3/4
∠Г = arccos(3/4) ≈ 41,41°
∠В = 180-∠Г = 180-arccos(3/4) ≈ 138,59°