М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
TimurZel
TimurZel
02.11.2022 10:02 •  Геометрия

Задачи на построение. Урок 2 На каком рисунке показано построение серединного перпендикуляра для отрезка AB?
!!​


Задачи на построение. Урок 2 На каком рисунке показано построение серединного перпендикуляра для отр

👇
Открыть все ответы
Ответ:
Tim4ik2281
Tim4ik2281
02.11.2022

Обязательно смотрим рисунок.

 

И примем во внимание, что получающиеся трапеции подобны не исходной.

 

Если трапеции ALFD и LBCF подобны, то a/LF = LF/b.

Отсюда LF = √(ab).

Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований.

---

Делим трапецию:


1 отрезок между основаниями исходной:
х²=2*8=16
х=√16=4


Второй отрезок между первым и основанием исходной трапеции 
у²=4*8=32
у =√32=4√2


Третий отрезок - идет под меньшим основанием 
z²=2*4=8
z=2√2

---------------------------

Отрезки в рисунке идут в таком порядке 

z, x, y 

 

---------------

 

Коэффициент подобия между этими четырьмя трапециями попарно ( смежными) равен

4:2√2=2:√2=2√2:√2·√2=2√2:2=√2

k=√2


Площади подобных фигур относяся как квадрат коэффициента их подобия.

Для этих трапеций это

(√2)²=2
Площадь второй по величине относится к нижней -большей- как 1:2=1/2
Третьей ко второй 1/2:2=1/4
и последней
1/8
сложим площади
1/2+1/4+1/8 =( 4+2+1)/8=7/8 

 7/8 < 1 
Площадь самой большой из этих четырёх трапеций больше суммы площадей остальных трёх

 


трапеция с основаниями 2 и 8 разрезана тремя отрезками, которые || основаниям, на четыре подобных ме
4,7(34 оценок)
Ответ:
егор23578584
егор23578584
02.11.2022
Сформулируйте и докажите признак равенства равнобедренных треугольников по основанию и углу при основанииТеорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.  Доказательство.Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса.Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников:AD-общая;углы 1 и 2 равны т.к. AD-биссектриса;AB=AC,т.к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.   В равнобедренном треугольнике углы при основании равны.   В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой     Если в треугольнике два угла равны, то он равнобедренный.  Если в треугольнике медиана является и высотой, то такой треугольник равнобедренный.   
4,5(27 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ