1) ВС перпендикулярна АВ (смежные стороны квадрата). АВ принадлежит плоскости АМВ и плоскости квадрата. Плоскость АМВ перпендикулярна плоскости квадрата. Значит ВС перпендикулярна плоскости АМВ. АМ принадлежит плоскости АМВ, значит ВС перпендикулярна АМ. 2) Угол между наклонной прямой и плоскостью это угол между наклонной и ее проекцией на плоскость. То есть надо найти угол МСН. МН - высота треугольника АВМ. Это равнобедренный треугольник, значит МН - высота и медиана. Тогда по Пифагору МН=√(МВ²-ВН²), или МН=√(24-4)=2√5. НС=√(ВС²+ВН²), или НС=√(16+4)=2√5. Тогда tg(<МСН)=МН/НС или tg(<МСН)=2√5/2√5=1. ответ: угол равен 45°.
пусть AB=26, а BC=32, а угол ABC=150 градусов. тогда, рассмотрим треугольник ABC:
по теореме косинусов AC^2=AB^2+BC^2-2*AB*BC*cosABC
потом рассмотришь треугольник BDC, в котором угол BCD=30 градусов (сумма соседних углов в паралеллограмме равна 180 градусам)
по теореме косинусов BD^2=CD^2+BC^2-2*CD*BC*cosBCD
потом из треугольника BOC опять же по теореме косинусов находишь косинус угла BOC
по основному тригонометрическому тождеству (sin^2(x) + cos^2(x)=1) находишь синус угла BOC
потом применяешь формулу площади параллелограмма: S=1/2*BD*AC*sinBOC