У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
Смотри, рисуешь прямоугольную трапецию, в ней прорисовываешь высоту(СО) . Нам известно, что меньшее основание =6, а большее =22. (Меньшее основание обозначим ВС, а большее AD.) Если ты нарисуешь высоту, то у тебя получится прямоугольник и треугольник. Сначала рассмотрим прямоугольник: У этой фигуры стороны попарно равны, значит вс=ad=6 см. Но известно, что AD=22, значит ОD=16. ДАЛЕЕ по теорему Пифагора рассчитаем сторону треугольника СЕ. Так как СЕ - гипотенуза то она равна 12 ( 16*16+20*20=корень из 144=12. Теперь нам известна высота, и мы можем найти площадь трапеции. Площадь трапеции= сумма оснований разделить на два и умножить на высоту= (6+22/2)*12=168 см в квадрате.
Найти:AN,BN.
Решение:
0,24м=24см
8дм=80см
1)AN=7+24+16=47(см)=4,7(дм)
2)BN=40-24=16(см)=1,6(дм)
ответ:AN=4,7 дм , BN=1,6 дм.