Приведем уравнение заданной прямой к общему виду:
5x + 2y + 4 = 0,
2y = -5x - 4 (делим на 2 обе части уравнения),
у = -2,5x - 2.
Уравнение прямой, параллельной данной, запишем, используя формулу: y - y0 = k(x - x0), где k - угловой коэффициент, x0,y0 - координаты точки, принадлежащей графику, в данном случае точки М. Так как k = -2,5, x0 = 2, y0 = 4, получим:
у – 4 = -2,5 * (х – 2),
у - 4 = -2,5х + 5,
у = -2,5х + 9.
ответ: уравнение параллельной прямой, проходящей через точку М(2; 4), имеет вид у = -2,5х + 9
-Следует сказать, что прямая, лежащая в плоскости, делит эту плоскость на две полуплоскости. Прямая в этом случае называется границей полуплоскостей. Любые две точки одной полуплоскости лежат по одну сторону от прямой, а две точки разных полуплоскостей лежат по разные стороны от граничной прямой.
-Два луча называются сонаправленными, если либо содержащие их прямые параллельны и лучи лежат в одной полуплоскости относительно прямой, соединяющей их начала, либо один из лучей содержит другой.
-Два луча ОА и О1А1, лежащие на одной прямой, называются сонаправленными, если они совпадают или один из них содержит другой.
-Углом между двумя пересекающимися прямыми называется величина наименьшего плоского угла при пересечении данных прямых. ... Если две прямые параллельны, то угол между ними принимается равным нулю.
-Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым. Определение 3.2. Две прямые в пространстве называются перпендикулярными, если они образуют прямой угол.
Проведем отрезок BM, соединяющий вершину треугольника с точкой пересечения биссектрис. Биссектрисы треугольника пересекаются в одной точке, тогда отрезок BM является частью биссектрисы ∠B в ∆ABC, значит, ∠ABM = ∠CBM.
Так как AM – биссектриса ∠A, то ∠BAM = ∠MAC, тогда находим ∠A.
∠A = ∠BAM + ∠MAC = 30° + 30° = 60°.
Аналогично, так как CM – биссектриса ∠C, то ∠BCM = ∠ACM, тогда находим ∠С.
∠С = ∠BCM + ∠ACM = 20° + 20° = 40°.
По теореме о сумме углов треугольника в ∆ABC:
∠A + ∠С + ∠B = 180°, следовательно ∠B = 180° – (∠A + ∠С) = 180° – (60° + 40°) = 180° – 100° = 80°.
Тогда находим ∠ABM.
∠ABM = 80° : 2 = 40°.
ответ: ∠ABM = 40°.