В треугольнике АВС медиана AD и биссектриса ВЕ пересекаются в точке О. Найдите площадь треугольника АВС, если угол АОВ равен 90 градусов, а площадь треугольника АОЕ равна 2.
Угол АОС =150°. Смежные с ним углы АОД и СОЕ равны 180° - 150° = 30°. Медианы треугольника точкой пересечения О делятся в отношении
2:1, начиная от вершины, поэтому АО = 2см, а = 1см. Поэтому же ОД = х, а СО = 2х Медианы делят треугольник на 6 равновеликих (равных по площади) треугольников, поэтому площадь треугольника AOD S(AOD) = 1/6 S(ABC) = 12 : 6 = 2(см2) Площадь треугольника AOD можно вычислить и иначе: S(AOD) = 0.5 - AO OD - sin 30° = 0.5 - 2
x 0.5 = 0.5x
0.5x = 2 + = 4(см) - это OD, OC = 2x = 8(см) CD = OD + OC = 4 + 8 = 12(см) ответ: 12см
1) ВС перпендикулярна АВ (смежные стороны квадрата). АВ принадлежит плоскости АМВ и плоскости квадрата. Плоскость АМВ перпендикулярна плоскости квадрата. Значит ВС перпендикулярна плоскости АМВ. АМ принадлежит плоскости АМВ, значит ВС перпендикулярна АМ. 2) Угол между наклонной прямой и плоскостью это угол между наклонной и ее проекцией на плоскость. То есть надо найти угол МСН. МН - высота треугольника АВМ. Это равнобедренный треугольник, значит МН - высота и медиана. Тогда по Пифагору МН=√(МВ²-ВН²), или МН=√(24-4)=2√5. НС=√(ВС²+ВН²), или НС=√(16+4)=2√5. Тогда tg(<МСН)=МН/НС или tg(<МСН)=2√5/2√5=1. ответ: угол равен 45°.
1) ВС перпендикулярна АВ (смежные стороны квадрата). АВ принадлежит плоскости АМВ и плоскости квадрата. Плоскость АМВ перпендикулярна плоскости квадрата. Значит ВС перпендикулярна плоскости АМВ. АМ принадлежит плоскости АМВ, значит ВС перпендикулярна АМ. 2) Угол между наклонной прямой и плоскостью это угол между наклонной и ее проекцией на плоскость. То есть надо найти угол МСН. МН - высота треугольника АВМ. Это равнобедренный треугольник, значит МН - высота и медиана. Тогда по Пифагору МН=√(МВ²-ВН²), или МН=√(24-4)=2√5. НС=√(ВС²+ВН²), или НС=√(16+4)=2√5. Тогда tg(<МСН)=МН/НС или tg(<МСН)=2√5/2√5=1. ответ: угол равен 45°.
Угол АОС =150°. Смежные с ним углы АОД и СОЕ равны 180° - 150° = 30°. Медианы треугольника точкой пересечения О делятся в отношении
2:1, начиная от вершины, поэтому АО = 2см, а = 1см. Поэтому же ОД = х, а СО = 2х Медианы делят треугольник на 6 равновеликих (равных по площади) треугольников, поэтому площадь треугольника AOD S(AOD) = 1/6 S(ABC) = 12 : 6 = 2(см2) Площадь треугольника AOD можно вычислить и иначе: S(AOD) = 0.5 - AO OD - sin 30° = 0.5 - 2
x 0.5 = 0.5x
0.5x = 2 + = 4(см) - это OD, OC = 2x = 8(см) CD = OD + OC = 4 + 8 = 12(см) ответ: 12см