А₁В₁С₁Д₁ -ромб, площадь которого равна А₁С₁*В₁Д₁/2=6*12/2=36/cм²/. Зная половины диагоналей 6/2 и 12/2, можно найти сторону, т.к. диагонали пересекаются под прямым углом. значит. сторона равна √(3²+6²)=
√(9+36)=3√5, ∠СВ₁С₁=30°. т.к. В₁С₁- проекция В₁С на плоскость основания. Тогда высота призмы СС₁=В₁С₁**tg30°=
3√5*(1/√3)=√15
Объем равен произведению площади на высоту. т.е. 36*√15=/см³/
Площадь полной поверхности состоит из двух площадей основания, т.е. 2*36=72, и боковой поверхности 4*В₁С₁*СС₁=4*(3√5)*(√15)=60√3
Плоскость сечения СSH проходит через высоту пирамиды и вершину прямого угла С, следовательно эта плоскость перпендикулярна основанию пирамиды и является прямоугольным треугольником СНS. СН является медианой треугольника АВС. Найдем по Пифагору гипотенузу АВ основания. AB=√(АС²+ВС²) = √(6²+8²) =10см. Медиана из прямого угла треугольника равна половине его гипотенузы (свойство), то есть СН=10:2=5см. Тогда площадь сечения (прямоугольный треугольник СНS) равна S=(1/2)*СН*НS = (1/2)*5*12=30см² ответ: площадь сечения равна 30см².
А₁В₁С₁Д₁ -ромб, площадь которого равна А₁С₁*В₁Д₁/2=6*12/2=36/cм²/. Зная половины диагоналей 6/2 и 12/2, можно найти сторону, т.к. диагонали пересекаются под прямым углом. значит. сторона равна √(3²+6²)=
√(9+36)=3√5, ∠СВ₁С₁=30°. т.к. В₁С₁- проекция В₁С на плоскость основания. Тогда высота призмы СС₁=В₁С₁**tg30°=
3√5*(1/√3)=√15
Объем равен произведению площади на высоту. т.е. 36*√15=/см³/
Площадь полной поверхности состоит из двух площадей основания, т.е. 2*36=72, и боковой поверхности 4*В₁С₁*СС₁=4*(3√5)*(√15)=60√3
=4*3*3*5√3=90√3
площадь полной поверхности равна (72+60√3) см²