ВС=ВК+КС, так как ВК=КС по условию, то ВК=ВС÷2. ВС=10 см по условию, тогда ВК=10÷2=5 см.
Так как АВ=АС по условию, то ∆АВС – равнобедренный с основанием ВС.
Углы при основании равнобедренного треугольника равны, то есть угол АСВ=угол АВС=55°
Так как ВК=КС, то АК – медиана проведенная к ВС.
Медиана, проведённая к основанию равнобедренного треугольника, так же является биссектрисой и высотой. Следовательно АК – биссектриса, тогда угол КАС=угол ВАК=35°, угол ВАС=угол ВАК*2=35°*2=70°. И угол АКВ=90°.
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
Дано:
AB = AC
угол BAK = 35°
BC = 10 см
ВК = KC
угол ABC = 55°
Найти:
ВК, угол KAC, угол BAC, угол AKB, угол ACB
ВС=ВК+КС, так как ВК=КС по условию, то ВК=ВС÷2. ВС=10 см по условию, тогда ВК=10÷2=5 см.
Так как АВ=АС по условию, то ∆АВС – равнобедренный с основанием ВС.
Углы при основании равнобедренного треугольника равны, то есть угол АСВ=угол АВС=55°
Так как ВК=КС, то АК – медиана проведенная к ВС.
Медиана, проведённая к основанию равнобедренного треугольника, так же является биссектрисой и высотой. Следовательно АК – биссектриса, тогда угол КАС=угол ВАК=35°, угол ВАС=угол ВАК*2=35°*2=70°. И угол АКВ=90°.
ответ: 5 см, 35°, 70°, 90°, 55°.