Решение: 1) Пусть в одной части х° , тогда величина первого угла равна х°, второго - (2х)°, третьего - (3х)°. Зная, что сумма углов треугольника равна 180°, составим уравнение: х + 2х + 3х = 180 6х = 180 х = 180 : 6 х = 30 ∠1 = 30°, ∠2 = 60°, ∠3 = 90°. 2) В прямоугольном треугольнике напротив угла в 30° по теореме лежит катет, равный половине гипотенузы. В нашем треугольнике меньшей стороной, длина которой равна 4 см, как раз и является катет, лежащий напротив угла в 30°. Делаем вывод о том, что большая сторона, которой является гипотенуза , будет равна 4 см·2 = 8 см. ответ: 8 см.
Если достроим прямоугольный треугольник до прямоугольника так, чтобы гипотенуза была его диагональю (то есть присоединим к треугольнику второй такой же точно), то площадь такого прямоугольника будет ровно в 2 раза больше площади треугольника, то есть 2 * 512 * корень(3) = 1024*корень(3).
А также площадь прямоугольника равна произведению катетов. Обозначим меньший катет буквой х, тогда больший будет х*tg(x) = x*корень(3).
Итого, имеем площадь прямоугольника х*х*корень(3) = 1024*корень(3).
Корень(3) сокращаем, остаётся х*х = 1024. Отсюда х = корень(1024) = 32.
1) Пусть в одной части х° , тогда величина первого угла равна х°, второго - (2х)°, третьего - (3х)°.
Зная, что сумма углов треугольника равна 180°, составим уравнение:
х + 2х + 3х = 180
6х = 180
х = 180 : 6
х = 30
∠1 = 30°, ∠2 = 60°, ∠3 = 90°.
2) В прямоугольном треугольнике напротив угла в 30° по теореме лежит катет, равный половине гипотенузы. В нашем треугольнике меньшей стороной, длина которой равна 4 см, как раз и является катет, лежащий напротив угла в 30°. Делаем вывод о том, что большая сторона, которой является гипотенуза , будет равна 4 см·2 = 8 см.
ответ: 8 см.