пусть m – точка пересечения диагоналей ac и bd четырёхугольника abcd. применим неравенство треугольника к треугольникам abc, adc, bad и bcd: ac < ab + bc, ac < da + dc, bd < ab + ad, bd < cb + cd. сложив эти четыре неравенства, получим: 2(ac + bd) < 2(ab + bc + cd + ad).
запишем неравенства треугольника для треугольников amb, bmc, cmd и amd: am + mb > ab, bm + mc > bc, mc + md > cd, ma + md > ad. сложив эти неравенства, получим: 2(ac + bd) > ab + bc + cd + ad.
1) 72° (так как сумма углов треугольника равна 180°)
2)49° (так как сумма углов треугольника равна 180°)
3)65° (так как внешний угол смежный с внутренним)
4)3° (так как внешний угол смежный с внутренним)
5)68° (биссектриса делить угол на 2 равных угла)
6)82° (биссектриса делить угол на 2 равных угла)
7) 44° (угол при высоте равен 90°, а сумма ∠Δ равна 180 °, тоесть нужно было от 180 отнять 90 и 46)
8) 8° (угол при высоте равен 90°, а сумма ∠Δ равна 180 °, тоесть нужно было от 180 отнять 90 и 82)
9) 7 (медиана соединяется с центром стороны, тоесть делит сторону AC пополам)
10) 29 (медиана соединяется с центром стороны, тоесть делит сторону AC пополам)
11) 10,5 и 11 (ну если середина то нужно на 2 делить)
12) 33 и 18,5 (ну если середина то нужно на 2 делить)
1 - лучами
2 - сторонами
3 - вершина
Объяснение: