3.Через точку А, принадлежащей окружности, проведен диаметр АВ и хорда АС, АК = 8 и угол ВАС =45. Перпендикулярно АВ проведена хорда СД, которая пересекает АВ в точке К. Найдите длину хорды СД.
1.Сумма длин средних линий равна половине периметра этого треугольника-22см. 2.∠A =( 360°/(2+7+6+3)) *3 =(360°/18)*3 =20°*3 =60°. ∠B =20°*7=140° ,∠C =20°*6 =120°,∠D =20°*3 =60°. 3.Находим гипотенузу:9^2+40^2=81+1600=корень из 1681=41^2. Складываем гипотенузы и катеты: 9^2+41^2+40^2=90^2см2 4.Раздели отрезок на 8 равных частей и поставь в точку. 5.пусть дана равнобедренная трапеция ABCD. AB=CD, BC и AD - основания. Проведем диагональ АС. Тогда по условию угол АСD = 90⁰ . Так как ВС=АВ=СD ( по условию) , то треугольник АВС - равнобедренный. угол ВАС=ВСА. Пусть угол ВСА=ВАС=х. Рассмотрим параллельные прямые ВС и АD и секущую АС. По свойсвам секущей к параллельным прямым угол ВСА=САD=х. Теперь рассмотрим ΔАВС. В нем угол АВС равен 180⁰-2х. В трапеции угол ВСD = х+90⁰. Тогда получаем по свойствам трапеции равенство: 180⁰-2х=х+90⁰ ⇒ 90⁰ =3х ⇒ х=30⁰. То есть углы ВАС, ВСА, САD равны по 30⁰. Найдем углы трапеции: угол ВАD=2х=СDА=60⁰ ; угол АВС=180-2х=ВСD= 120⁰ ответ: 60⁰,120⁰,120⁰,60⁰.
Равносторонний, значит будет найти немного проще радиус круга равен половине стороны квадрата, т.к. круг вписан в него, радиус равен двум, отношение биссиктрисс в точке разрыва относится как два к одному от вершины ( есть такое свойство), отсюда две части равно двум см, следоаательно три части трем см, далее рассмотрим прямоугольный треуг. у которого катет один равен трем, углы равны 60° и 30°, по свойству каьета лежащего против угла в 30° он равен половине гиппоьинузы, пусть этот катет равен х, тогда гипп равна 2х из т.П. 3=√(4х^2-х^2)=х√3=> х=3/√3=√3, отсюда гипп равна 2√3 и найдем площадь треугольника sΔ=1/2 *3*2√3=3√3 см^2
с вопросом у меня в профиле самый первый