Точка S одинаково удалена от вершин квадрата, => можем рассматривать правильную четырехугольную пирамиду SABCD. AS=BS=CS=DS= 30 см, SO=24 см, SO_|_ABCD. О - точка пересечения диагоналей квадрата - основания пирамиды.
рассмотрим ΔAOS: <AOS=90°, гипотенуза AS=30 см катет SO=24 см катет AO, найти по теореме Пифагора: AS²=AO²+SO² 30²=AO²+24², AO²=30²-24². 30²-24²=(30-24)*(30+24)=6*54=6*6*9 AO=6*3, AO=18 см AO=AC/2. AC диагональ квадрата, АС=36 см AC²=2a², a - сторона квадрата 36²=2*а². а=18√2
Если стороны одного угла соответственно параллельны сторонам другого угла, и оба угла острые (или оба угла тупые), то углы равны.
Дано: ∠АВС и ∠КМР - острые, ВА║МК, ВС║МР.
Доказать: ∠1 = ∠2.
Доказательство:
Стороны углов АВС и КМР соответственно параллельны.
Тогда ∠1 = ∠3 как соответственные при пересечении параллельных прямых ВА и МК секущей ВС.
∠2 = ∠3 как соответственные при пересечении параллельных прямых ВС и МР секущей МК.
Значит ∠1 = ∠2.
Если стороны одного угла соответственно параллельны сторонам другого угла, и один угол острый а другой тупой, то сумма углов равна 180°.
Дано: ∠АВС - острый, ∠КМР - тупой, ВА║МК, ВС║МР.
Доказать: ∠1 + ∠2 = 180°.
Доказательство:
∠1 = ∠3 как накрест лежащие при пересечении параллельных прямых ВА и МК секущей ВС.
∠2 + ∠3 = 180°, так как эти углы - внутренние односторонние при пересечении параллельных прямых ВС и МР секущей МК.
Значит
∠1 + ∠2 = 180°.