В равнобедренном треугольнике АВС с основанием АС проведена биссектриса CD. Прямая, проходящая через точку D перпендикулярно прямой DC, пересекает прямую АС в точке Е. Докажите, что ЕС = 2AD. С рисунком
Высота равнобедренного треугольника, проведенного к основанию 6, делит основание пополам. ( cм. рисунок в приложении) Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник) S=6·4/2=12 кв. ед Вершина пирамиды проектируется в центр описанной окружности (см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу) r=S/p=12/(5+5+6)/2=24/16=3/2=1,5 H=r·tg60°=1,5·√3=3√3/2
Основное тригонометрическое тождество:
sin²α + cos²α = 1, откуда
sinα = √(1 - cos²α) или sinα = - √(1 - cos²α)
Знак синуса зависит от координатной четверти, в которой расположен угол.
Но в данной задаче, вероятно, речь идет об остром угле прямоугольного треугольника, поэтому будем рассматривать синус угла только положительный.
tgα = sinα / cosα
1. cosα = 5/13
sinα = √(1 - 25/169) = √(144/169) = 12/13
tgα = 12/13 : 5/13 = 12/5
2. cosα = 15/17
sinα = √(1 - 225/289) = √(64/289) = 8/17
tgα = 8/17 : 15/17 = 8/15
3. cosα = 0,6
sinα = √(1 - 0,36) = √(0,64 ) = 0,8
tgα = 0,8/0,6 = 8/6 = 4/3
Объяснение: