Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
1.
По теореме косинусов найдём угол MON
MN² = OM² + ON² - 2*OM*ON*cos(∠MON)
12² = 20² + 20² - 2*20*20*cos(∠MON)
144 = 400 + 400 - 800*cos(∠MON)
656 = 800*cos(∠MON)
cos(∠MON) = 41/50
∠MON = arccos(41/50)
2.
Площaдь треугольника MON
S(ΔMON) = 1/2*OM*ON*sin(∠MON)
sin(∠MON) = √(1-cos²(∠MON)) = √(1 - 41²/50²) = √(2500 - 1681)/50 = √819 / 50 = 3√91/50
S(ΔMON) = 1/2*20*20*3√91/50 = 12√91
3.
Площадь кругового сектора MON
S(∪MON) = ON²*∠MON/2 = 20²/2*arccos(41/50) = 200*arccos(41/50)
4.
Площадь заштрихованной фигуры
S = S(∪MON) - S(ΔMON) = 200*arccos(41/50) - 12√91 ≈ 7.404