Параллелограмм – четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых. Противоположные стороны параллелограмма попарно равны. Признаки: 1) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом. 2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом. 3) Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом. 1 признак: Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD. Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
Точка вне плоскости А. Отрезки от неё АВ = 10 и АС =17. Перпендикуляр из точки А на плоскость обозначим как AD. Проекции отрезков, которые надо найти BD и CD По теореме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2. От AD можно избавиться. И значения АВ и АС подставить. 100 = BD^2 + 289 - CD^2. Или CD^2 - BD^2 =189. Слева разность квадратов. Причём известна разность проекций. Можем получить СD+BD = 21. Сумму знаем, разность знаем. Решая систему получим CD = 15, BD =6
1) Точка вне плоскости А. Проекции от отрезков ВD = 12 и СD =40. Перпендикуляр из точки А на плоскость обозначим как AD. Сами отрезки, которые надо найти АB и АC По теореме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2. От AD можно избавиться. И значения ВD и СD подставить. AB^2 =144 + AС^2 - 1600. Всё решается точно так же, как в предыдущей задаче. AB^2 - AС^2 = 1456 -> AB + AС = 56 -> АВ =41; АС = 15 2) Точка вне плоскости А. Проекции от отрезков ВD = 1 и СD =7. Перпендикуляр из точки А на плоскость обозначим как AD. Сами отрезки, которые надо найти АB и АC относятся. как 1 : 2 По теореме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2. От AD можно избавиться. И значения ВD и СD подставить. AB^2 =1 + AС^2 - 49 И ещё знаем, что 2АВ = АС, то есть 3 АВ^2 = 48 -> AB = 4, АС = 8
оото л л лтв пм н р р р п ч а д д д ь б б б б б ьрм