1). Треугольники АМВ и СМВ равны по первому признаку равенства треуг-ов: две стороны и угол между ними одного треуг-ка соответственно равны двум сторонам и углу между ними другого: - АВ=СВ, т.к. АВС равнобедренный; - ВМ - общая сторона; - углы АВМ и СВМ равны, т.к. в равнобедренном АВС медиана BD, проведенная к основанию, является также и биссектрисой.
2). Треугольники AMD и CMD также равны по первому признаку равенства: - AD=CD, т.к. BD - медиана АВС; - MD - общая сторона; - углы ADM и CDM - прямые, т.к. в равнобедренном АВС медиана BD, проведенная к основанию, является также и высотой.
Вписанный прямой угол опирается на диаметр.
ACD=90 => AD=8*2 =16 (диаметр)
Катет против угла 30 равен половине гипотенузы.
CAD=30 => CD=AD/2 =8
Равнобедренная трапеция, боковые стороны равны.
AB=CD =8
Сумма острых углов прямоугольного треугольника 90.
CDA=90-CAD =60
Равнобедренная трапеция, углы при основании равны.
BAD=CDA =60
BAC=BAD-CAD =60-30=30
Вписанный угол равен половине дуги, на которую опирается.
BAC=CAD => ∪BC=∪CD
Равные дуги опираются на равные хорды.
∪BC=∪CD => BC=CD =8
P(ABCD)=8+8+8+16 =40 (см)