Дано: ABCA1B1C1 - правильная треугольная призvf AB=8см AA1=6см Найти S сеч. -? Решение: 1)Построим сечение: (B1C1 - (это сторона верхнего основания), А - ( это противолежащая вершина)) Проводим B1A в (AA1B1B) Проводим АС1 в (АА1С1С) В1С1А - искомое сечение, равнобедренный треугольник, т.к B1A =АС1 2)по теореме Пифагора из треугольника AA1B1 - прямоугольного: B1A^2 = AA1^2+A1B1^2 отсюда: B1A^2= 36+64=100 B1A=10 3) по формуле: S=√p(p-a)(p-b)(p-c) S=√14*4*4*6=8√21 ответ:8√21 или можно найти высоту АН сечения, она равна 2√21 и потом находим S=a*h/2 S=8*2√21/2=8√21
Знак ∪ использован, как знак дуги.
По условию ∪ВС - ∪АС = 40°, а ∪ВС + ∪АС = 180°, так как АВ - диаметр.
∪АС = (180° - 40°)/2 = 70°.
∪ВС = ∪АС + 40° = 110°
∠АВС вписанный, опирается на дугу АС, значит
∠АВС = ∪АС/2 = 70°/2 = 35°.
∠ВАС вписанный, опирается на дугу ВС, значит
∠ВАС = ∪ВС/2 = 110°/2 = 55°
Радиус, проведенный в точку касания, перпендикулярен касательной, поэтому ∠ОАВ = 90°.
∠ОАС = ∠ОАВ - ∠ВАС = 90° - 55° = 35°
Вписанный угол, опирающийся на полуокружность, прямой. Поэтому
∠АСВ = 90°.
∠АСО = ∠АСВ = 90° как смежные.
ΔАОС: ∠АСО = 90°, ∠ОАС = 35°
∠АОС = 90° - 35° = 55° так как сумма острых углов прямоугольного треугольника 90°.