Если периметр квадрата равен 24, легко найти длину одной стороны по формуле Р(кв.) = 4а, то есть 24 = 4а, получаем, что а = 6. Тогда можем воспользоваться теоремой Пифагора (т.к. у квадрата все углы прямые) и рассчитать длину диагонали как гипотенузу в прямоугольном ∆. Тогда получим, что х² = 6² + 6² = 2*36 = 72, а х = √72, то есть х = √(3² * 2² * 2) = 6√2. Мы берем только положительное значение, потому что арифметический квадратный корень ≥ 0, а длина строго больше 0. ответ: длина диагонали равна 6√2.
Объяснение:
1)
6 и 8 - значение катетов.
По теореме Пифагора найдем гипотенузу.
√(6²+8²)=√(36+64)=√100=10
ответ: 10
2)
Условие не правильно, гипотенуза не может быть меньше катета.
3)
12 и 35- значение катетов
По теореме Пифагора найдем гипотенузу.
√(12²+35²)=√(144+1225)=√1369=37
ответ: 37
4)
40 и 42 значение катетов.
По теореме Пифагора найдем гипотенузу
√(40²+42²)=√(1600+1764)=√3364=58
ответ: 58
5)
20- значение гипотенузы
15 - значение катета.
По теореме Пифагора найдем катет
√(20²-15²)=√(400-225)=√175=5√7
ответ: 5√7
6)
1 и 2√6 - значение катетов.
По теореме Пифагора найдем гипотенузу.
√(1²+(2√6)²)=√(1+4*6)=√25=5
ответ: 5
7)
6 и 6√3 - значение катетов.
По теореме Пифагора найдем гипотенузу.
√(6²+(6√3)²)=√(36+36*3)=√144=12
ответ: 12
8)
10√2 - значение гипотенузы
2- значение катета
По теореме Пифагора найдем катет.
√((10√2)²-2²)=√(200-4)=√196=14
ответ: 14