Диагонали ромба пересекаються под прямым углом и делят угла ромба на равные угля (т. е. являються биссектрисами). Рассмотрим один из четырех прямоугольных треугольников, которые образовались при пересечении диагоналей ромба.
Сумма углов этого треугольника равна 180 град.
составим уравнение: 2х+7х+90=180 Решим х=10.
Углы равны: 2*10=20 град и 7*10=70 град.
Переходим к ромбу: углы равны: 20*2=40 град и 70*2=140 град
ответ: у ромба два угла по 40 град и два - по 140 град
Проверяем 40+40+140+140=360
360=360
периметр паралелограмма - а+b+а+b=50 (где a.b - стороны параллелограмма)
т,к диагонали параллелограмма с и d деляться в точке пересечения пополам, следовательно можно записать разность периметров 2-х треугольниклов: (c/2+d/2+b) - (c/2+d/2+a)=5
раскрываем скобки: c/2+d/2+b-c/2-d/2-a=5
упрощаем : b-a=5
получили систему: a+b+a+b=50
2a+2b=50
упрощаем и получаем систему: a+b=25 (1)
b-a=5 (2)
решаем, выразим во (2) уравнении b через a , т.е b=5+a и в (1) подставим вместо b: a+ 5+a=25
решаем 2a=25-5.
a=10
теперь полученный результат т,е а=10, подставим во (2) уравнение и найдем b:
b-10=5.
b=5+10.
b=15
ответ:a=10. b=15