1. х-одна сторона, тогда 3х - вторая сторона
75=3х*х
75=3*х^2
х^2=25
x=5
ответ : 5 см, 15 см
2. треугольник равнобедренный. значит можно этот треугольник рассмотреть как 2 прямоугольных. треугольник равнобедренный( гипотенуза 5, один из катетов равен 3) тогда по т. Пифагора высота равна 4.
остальные высоты можно найти через площадь. площадь равна 1/2*4*6=12
1/2*h1*5=12, h1 = 4,8. вторая высота такая же т.к. сторона, к которой проведена высота, такая же.
ответ : 4 см, 4,8см, 4,8 см
3. 8/а=5/в=7/с=1/4
8\а=1/4
а=32
5/в=1/4
в=20
7/с=1/4
с=28
Р=32+20+28=80
площадь находим через формулу Герона
S= sqrt {40*8*20*12}=sqrt{76800}=10*2*2*2*2sqrt{3}=160sqrt{3}
ответ : 80 см, 160sqrt{3} см
4.площадь прямоугольного треугольника вычисляется по формуле S = (a*b)/2.
a, b - соответственно катеты.
a/b=7/12 по условию задачи.
выражаем b через a: b=(a*12)/7.
Подставляем в формулу для площади:
S=(a*a*12)/7
168=(a*a*12)/7
a*a=168*7/6=196
a=14.
b=14*12/7=24.
ответ: 14 и 24
5. Пусть
a-верхнее основание
b-нижнее
h-высота
135-90= 45 градусов
треуг CDH -равнобедренный тк угол CHD-прямой
то BC=HD=6
то AD=AH+HD=6+6=12
S=(a+b)/2*h
S=(6+12)/2*6=54
ответ : 54
7.
сумма противоположных сторон описанного четырехугольника равны
АВСД -четырехугольник
АВ+СД=ВС+АД=12
r -радиус вписанной окр. с центром т.О
Sаод=0,5*r*АД
Sаов=0,5*r*АВ
Sвос=0,5*r*ВС
Sсод=0,5*r*СД
Sавсд=Sаод+Sаов+Sвос+Sсод=0,5*r(АД+АВ+ВС+СД)=0,5*5(12+12)=60
ответ : 60
8.
Сначала нужно доказать что треугольники подобны..
Угол C общ
угол B = углу A1B1C ( по фалесу) ,
значит треугольники подобны по двум углам.
21,5/9*7150,5/9=16 целых 6,5/9 см -A1C
18/9*7=14 см - В1С
10/9*7=70/9=7 целых 7/9 см А1В1
P= 16 целых 6,5/9 +14+ 7 целых 7/9=37 целых 13,5/9=38 целых 4,5/9=38,5
ответ: 38,5 см
Даны вершины А(-7;2) B(5;-3) C(8:1) треугольника АBC.
Составить уравнение высоты, проведенной из вершины С.
Высота СД - это перпендикуляр к прямой АВ.
Составим уравнение прямой АВ.
Вектор АВ = (5-(-7); -3-2) = (12; -5).
Уравнение АВ:
(x + 7)/12 = (y – 2)/(-5) в каноническом виде или
5х + 12у + 11 = 0 в общем виде.
Перпендикулярная прямая в общем виде Ах + Ву + С = 0 имеет коэффициенты по сравнению с АВ, равные В и -А (это из условия, что их скалярное произведение равно нулю): 12х - 5у + С = 0.
Для определения слагаемого С подставим координаты точки С:
12*8 - 5*1 + С = 0, отсюда С = -96 + 5 = -91.
Получаем уравнение общего вида:
СD = 12х - 5у - 91 = 0.