Пусть SABCD - правильная четырехугольная пирамида. В основании правильной четырехугольной пирамиды лежит квадрат ABCD со стороной, равной AB, а боковые грани пирамиды - равные равнобедренные треугольники. Высота боковой грани пирамиды - апофема. У равных треугольников соответствующие высоты равны.
Апофема SK проведена к основанию боковой грани AB, апофема SM проведена к основанию противоположной грани CD
Рассмотрим треугольник KSM. SK=SM = AB
Высоты боковых граней пирамиды также являются медианами и соответствено делят сторону основания пирамиды пополам. КМ - является отрезком между серединами противоположных сторон квадрата и равен стороне квадрата ( не уверена, нужно ли это вообще доказывать) ⇒ KM = AB = SK = SM ⇒ треугольника SKM - равносторонний. Все его углы равны 60 градусов. угол SKM = 60 град
Двугранный угол между боковой гранью и основанием пирамиды равен 60 градусов
Углы, смежные с внутренними углами многоугольника, называются внешними.
Сумма внешнего и внутреннего угла при одной вершине равна градусной мере развернутого угла =180°
Сумма внешних углов многоугольника равна разности между суммой всех таких развернутых углов и суммой внутренних углов многоугольника.
Как известно, сумма внутренних углов многоугольника находится по формуле N=180°•(n-2)
Поэтому сумма внешних углов
180°•n-180•(n-2)=180°•n-180°•n+360°=360°
Сумма внешних углов треугольника, взятых по одному при каждой вершине, равна 360°.