Сделай следующий рисунок: начерти треугольник АВС и впиши в него окружность. надо помнить, что центром окружности, вписанной в треугольник является точка пересечения биссектрис. Надо найти углы АОВ, АОС, ВОС.
Сначала найдем углы треугольника.
пусть х град. - величина одной части угла.
Тогда угол А= 3х град. угол В = 7х град, угол С = равен 8х град.
сумма углов треугольника равна 180 град. Составим и решим уравнение:
3х+7х+8х = 180
18х=180
х=10
10 градусов - величина одной части угла.
угол А=3*10 = 30 град
угол В=7*10=70 град.
угол С = 8*10 = 80 град.
Т.к АО и ОВ - биссектрисы углов А и В, то угол ВАО=15 град, угол АВО= 35 град., а их сумма равна 15+35=50 (град.), следовательно угол АОВ = 180 - 50 = 130(град)
ВО и СО - биссектриссы углов В и С, угол ОВС=35 град., угол ОСВ = 40 град., тогда их сумма равна 75 град. и следовательно угол ВОС = 180 - 75 = 105(град)
Тогда угол АОС можно вычислить так: 360 - (130+105) = 125(град).
ответ: угол АОВ= 130 град., угол ВОС = 105 град., угол АОС = 125 град.
Высота h = 2r = 2*5 = 10 см.
Сторона ромба равна h / sin 30 = 10 / 0.5 = 20 см.
Периметр Р = 4*20 = 80 см.
В любой ромб можно вписать окружность. Радиус r вписанной окружности удовлетворяет соотношениям: h - высота ромба
d1, d2 – диагонали ромба, a – его сторона