Смотри рисунок на прикреплённом фото.
1) ΔАСD ~ ΔABС по 1-му признаку подобия прямоугольных треугольников: если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие треугольники подобны. А у ΔАСD и ΔABС общий острый угол А.
2) Катет АС прямоугольного ΔАВС лежит против угла ∠В = 30°, значит АС равен половине гипотенузы АВ: АС = 0,5АВ = 0,5·12 = 6 (см).
Найдём коэффициент подобия ΔАСD и ΔABС по отношению их гипотенуз АС : АВ = 6/12 = 1/2. Следовательно, коэффициент подобия этих треугольников k = 1/2. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
S(ΔACD) : S(ΔABC) = k² = 1 : 4.
3) Найдём величину катета ВС, используя теорему Пифагора:
ВС = √(АВ² - АС²) = √(12² - 6²) = √108 = 6√3 (см)
Известно, что биссектриса угла делит противолежащую сторону на отрезки, пропорциональные прилежащим к углу сторонам. Поэтому СЕ : ВЕ = АС : АВ = 1/2.
Тогда СЕ = 1/3 · ВС = 2√3 (см) и ВЕ = 2/3 · ВС = 4√3 (см)
ответ: S тр. ABCD = 300 ед.кв.
Объяснение: Проведём из т.A к большему основанию BC высоту AM.
Отрезок DC не только боковая сторона прямоугольной трапеции ABCD, но и высота этой трапеции.
DC ⊥ BC; AM ⊥ BC ⇒ DC ║ AM ⇒ CD = AM = 15 ед.
Т.к. AM - высота ⇒ ΔAMB - прямоугольный.
Найдём катет MB по т.Пифагора:
MB = √(AB² - AM²) = √(25² - 15²) = √(625 - 225) = √400 = 20 ед.
CM = AD, т.к. AM отсекает от трапеции ABCD прямоугольник DAMC.
Пусть x ед. меньшее основание трапеции (AD), тогда (x+20) ед. равно большее основание трапеции (BC). AB+BC+CD+AD=80 ед.
25 + (x + 20) + 15 + x = 80; 60 + 2x = 80; 2x = 20; x = 10
Если меньшее основание AD прямоугольной трапеции ABCD составляет 10 ед. ⇒ большее основание BC = 30 ед.
Формула площади нашей прямоугольной трапеции : (AD+BC)/2*AM.
⇒ S тр. ABCD = (10 + 30)/2 * 15 = 40/2 * 15 = 20 * 15 = 300 ед.кв.
один из углов меньше 90 градусов