1)
Δ АСВ – прямоугольный.
По теореме Пифагора
АВ2=AC2+BC2=225+400=625
AB=25
Проводим высоту СН прямоугольного Δ АСВ
СH– проекция MH
CН⊥АВ, по теореме о трех перпендикуярах MH ⊥АВ
Расстояние от вершины M до АВ и есть МН,
Из формула площади прямоугольного треугольника АСВ
S=1/2·АС·ВС
и
S=(1/2)·АВ·СН
СН=АС·ВС/АВ=20·15/25=12
Из прямоугольного треугольника МСН прямоугольный
МН=СН/сos 60 °=12/0,5=24
О т в е т. Расстояние от вершины пирамиды до прямой АВ равно 24 см.
2)
Из прямоугольного треугольника МСН прямоугольный
МC2=MH2–CH2=242–122=432
MC=12√3
S=S Δ MBC+S Δ MAB+S Δ MAD+S Δ MDC+S(ABCD)
S Δ MBC=(1/2)BC·CD=(1/2)·20·12√3=
S Δ MAB=(1/2)AB·CH=(1/2)·25·12=150
CK⊥АD
CK=AB·CH/AD=25·12/20=15
S Δ MAD= (1/2)AD·CK=(1/2)20·15=150
S Δ MDC=(1/2)CD·MC=(1/2)·25·12√3=
S(ABCD)=2S Δ ABC=2·(1/2)BC·AC=20·15=300
1) <OCD = 35° 2) Р = 40 см.
Объяснение:
1). В прямоугольнике диагонали равны и точкой пересечения делятся пополам. Значит треугольник АОD - равнобедренный с углом при вершине 70°. Тогда углы при основании равны (180 - 70):2 = 55° (сумма внутренних углов треугольника равна 180°). Итак, <ODA = 55°. Угол прямоугольника ADC = 90° и <ADC = <ODA + <ODC =>
<ODC = 90° - 55° = 35°. Но треугольник COD - равнобедренный. Следовательно, <OCD = <ODC = 35°.
2). В ромбе все стороны равны. Рассмотрим треугольник АВС. В нем АВ = ВС (значит треугольник равнобедренный), а угол при вершине В равен 60° (дано). Следовательно, треугольник АВС еще и равносторонний. АВ =АС = 10см.
Периметр ромба равен 4*10 = 40см.