іть величина кут при вершині рівнобедреного трикутника 120°, а довжина бісектриси, проведеної до бічної сторони дорівнює 3 . знайдіть основу цього трикутника
Пусть d, e и f - точки касания вписанной окружности со сторонами треугольника авс: ас, ав и вс соответственно.нам дано: ав=30см, вf=14см, fc=12см.заметим, что ве=вf=14см, dc=fc=12см, а ае=аd как касательные, проведенные из одной точки к окружности.тогда ае=ав-ве=30-14=16см, значит аd=16см. dc=fc=12см. значит ас=ad+dc=16+12=28см. полупериметр треугольника равен: р=(30+26+28): 2=42см.есть формула для вписанной в треугольник окружности: r=√[(p-a)(p-b)(p-c)/р], где р - полупериметр, а, b, c - стороны треугольника. в нашем случае: r=√(12*16*14/42)=√64=8см.ответ: r=8см.
Через 3 точки можно провести плоскость, и только одну. Стороны сечения куба этой плоскостью будут лежать на гранях куба. Данное сечение куба - трапеция КЕВ1С с большим основанием В1С и меньшим ЕК. В1С= диагональ грани и равна а√2 по свойству диагонали квадрата. ЕК=(а/2)√2 на том же основании КС²=ДС²+КД²=а²+ 0,25а²=1,25а² Проведем высоту КН трапеции. Высота равнобедренной трапеции из тупого угла делит большее основание на отрезки, равные полуразности и полусумме оснований.
Площадь трапеции равна произведению высоты на полусумму оснований: S=KH*(EK+B1C):2= =1,5а√0,5*(0,5а√2+а√2):2= =(1,5а√0,5)*0,75а√2= =1,5а*0,75а*√(0,5*2)=1,125а² ------ Для нахождения площади трапеции существует не только та формула, которую в большей части случаев мы используем. В приложенном рисунке дана формула для произвольной трапеции и для равнобедренной трапеции через стороны. По ней площадь получается та же, что по обычной формуле через назождение высоты. S=1,125а² ------- [email protected]
Объяснение:
АВС равнобедренный тр-к
<В=120
СН - биссектриса
СН=3корень2
Найти : АС
<А=<С=(180-120)/2=30
<АСН=<С/2=30:2=15, т к СН - биссектриса
<AHC=180-(<A+<ACH)=180-(30+15)=135
Возьмём тр-к АНС:
По теореме синусов :
АН/sin15=HC/sin30=AC/sin135
AC/sin135=HC/sin30
AC=HC×sin135/sin30=
=3корень2 ×корень2/2:1/2=3:1/2=3×2=6 см