Боковое ребро правильной четырехугольной пирамиды MABCD с вершиной M равно стороне ее основания. Найдите угол между прямыми AB и CM. очень , завтра зачёт
Дано: MABCD - правильная четырехугольная пирамида, MD = DC
Найти: ∠(AB,CM) - ?
Решение: По определению пирамиду называют правильной если, её основание правильный многоугольник, а высота пирамиды является центром этого многоугольника. Правильным четырехугольником является квадрат. По определению угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым, тогда так как ABCD - квадрат, то AB ║ DC, следовательно ∠(AB,CM) = ∠(MD,DC) = ∠MDC .Пусть диагонали квадрата пересекаются, в точке E. Точка пересечения диагоналей квадрата является центром квадрата. Треугольник ΔMED и ΔMEC - прямоугольны так как ME - высота пирамиды, следовательно ΔMED = ΔMEC по двум катетам так как ME - общая и делит диагонали на четыре равны отрезка по свойству квадрата, тогда DE = EC. ΔMED = ΔMEC ⇒ MD = MC, а так как по условию MD = DC, то MD = MC = DC и треугольник ΔMDC - правильный, тогда по свойству правильного треугольника каждый его угол 60° и ∠MDC = ∠(AB,CM) = ∠(MD,DC) = 60°.
2, 3 и 5 части. Вначале разделяем отрезок пополам (2+3=5 и 5 частей), Для этого проводим окружности из концов отрезка радиусом как отрезок, через точки пересечения окружностей проводим прямую, она разделит наш отрезок пополам вторая часть отрезка (половина исходного отрезка) делится следующим образом: из начала отрезка проводим луч, на нем с циркуля откладываем пять равных отрезков. Конец последнего отрезка соединяем с концом нашего отрезка и через точки на луче проводим прямые параллельные полученному отрезку. Они разобьют нашу исходную половину на пять равных частей. Ставим точку на конце второй от началачасти и имеем разбитый отрезок на три части 2:3:5
Пирамида правильная, значит в основании квадрат, высота проецируется в точку пересечения его диагоналей. АС = d. Sabcd = d²/2 - половина произведения диагоналей. Сторона квадрата: АВ = АС/√2 = d/√2 = d√2/2 Проведем ОН⊥CD. ОН = AD/2 = d√2/4 как средняя линия ΔACD. OH - проекция SH на плоскость основания, значит SH⊥CD по теореме о трех перпендикулярах. ∠SHO = α - линейный угол двугранного угла наклона боковой грани к плоскости основания. ΔSOH: SO = OH·tgα = d√2/4 · tgα
V = 1/3 ·Sabcd · SO V = 1/3 · d²/2 · d√2/4 · tgα = d³·tgα / 24
∠(AB,CM) = 60°
Объяснение:
Дано: MABCD - правильная четырехугольная пирамида, MD = DC
Найти: ∠(AB,CM) - ?
Решение: По определению пирамиду называют правильной если, её основание правильный многоугольник, а высота пирамиды является центром этого многоугольника. Правильным четырехугольником является квадрат. По определению угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым, тогда так как ABCD - квадрат, то AB ║ DC, следовательно ∠(AB,CM) = ∠(MD,DC) = ∠MDC .Пусть диагонали квадрата пересекаются, в точке E. Точка пересечения диагоналей квадрата является центром квадрата. Треугольник ΔMED и ΔMEC - прямоугольны так как ME - высота пирамиды, следовательно ΔMED = ΔMEC по двум катетам так как ME - общая и делит диагонали на четыре равны отрезка по свойству квадрата, тогда DE = EC. ΔMED = ΔMEC ⇒ MD = MC, а так как по условию MD = DC, то MD = MC = DC и треугольник ΔMDC - правильный, тогда по свойству правильного треугольника каждый его угол 60° и ∠MDC = ∠(AB,CM) = ∠(MD,DC) = 60°.