Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Решение: 1) Треугольник ABC подобен ADC за двумя углами,(угол ACB=угол ADC =90 градусов,угол BAC=угол DAC).По теореме Пифагора AD=корень(AC^2-CD^2)= корень(3^2-2.4^2)=1.8Квадрат высоты равен произведению проекций катетов на гипотенузу:CD^2=AD*BD, отсюда BD=CD^2\AD, BD=2.4^2\1.8=3.2Гипотенуза AB=AD+BD=1.8+3.2=5 смПо теореме Пифагора катет BC=корень(AB^2-AC^2)==корень(5^2-3^2)=4 смПлощадь прямоугольного треугольника равна половине произведения катетов:S=1\2*AC*BC=1\2*3*4=6 см^2.2) Дополнив треугольник до параллелограмма,проведя стороны BF|| CA, AF|| CBВектор CD=1\2*вектор CF=1\2*(вектор CA+ вектор CB)3)Радиус вписанного круга в прямоугольный треугольник равен половине от разницы( сумма катетов – гипотенуза)r=1\2*(AC+BC-AB)r=1\2*(3+4-5)=1Площадь круга равна Sкр=pi*r^2Sкр=pi*r^2=3.14*1^2=3.14
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.