М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
veyper1
veyper1
02.05.2023 23:46 •  Геометрия

Сторона основания правильной треугольной пирамиды SABC имеет длину 7√3.Высота пирамиды равна 7. На стороне основания АC выбрана точка M такая что AM:MC=5:2.Найдите площадь сечения пирамиды проходящая через точку M перпендикулярно АС.(ответ равен 12)

👇
Ответ:
kseniamurzakova
kseniamurzakova
02.05.2023

(см. объяснение)

Объяснение:

Поскольку пирамида правильная, то BH - медиана, биссектриса и высота треугольника ABC, то есть верно, что BH\perp AC. Проведем прямую ME||BH. Тогда ME\perp AC. Пусть CP другая медиана треугольника ABC. Пусть медианы этого треугольника пересекаются в точке O. Тогда из-за того, что пирамида правильная, SO - это ее высота, т.е. SO\perp(ABC), а значит и любой прямой в этой плоскости. Пусть ME\cap CP=J. Проведем через точку J прямую параллельную SO, которая пересечет SC в точке I. Тогда IJ\perp(ABC), а значит и любой прямой в этой плоскости. Соединим точки M, I и E. Получим плоскость (MIE). Покажем, что AC\perp(MIE). AC\perp ME и AC\perp IJ, и ME\cap IJ=J. Тогда задача сводится к нахождению площади треугольника MIE. Будем искать ее, как S=\dfrac{1}{2}ME\times IJ. Из подобия треугольников следует, что ME=\dfrac{4BH}{7},\;=\;ME=6. Из подобия треугольников IJ=\dfrac{4SO}{7},\;=\;IJ=4. Подставив найденное в формулу выше, получим S=\dfrac{1}{2}\times 6\times 4=12. Таким нами образом было получено, что искомая площадь равна 12.

Задание выполнено!


Сторона основания правильной треугольной пирамиды SABC имеет длину 7√3.Высота пирамиды равна 7. На с
4,5(17 оценок)
Ответ:
MrDimon07
MrDimon07
02.05.2023

12 .................

Объяснение:


Сторона основания правильной треугольной пирамиды SABC имеет длину 7√3.Высота пирамиды равна 7. На с
4,4(31 оценок)
Открыть все ответы
Ответ:
MAXIMUS111111111
MAXIMUS111111111
02.05.2023
Х-1 часть;так как у нас имеется соотношение чисел,то исспользуем х-ы.Запишем формулу периметра треугольника :
3х+4х+6х=130;130=13х;х=10;
Подставляем значение х  и получаем треугольник со сторонами 30см,40см и 60см.
Далее из условия узнаем ,сто нам необходимо найти длину сторон теугольника,вершинами  которого являются  середины сторон данного треугольника,то есть по сути стороны искомого треугольника будут средними линиями для треугольника с периметром 130см.Следовательно стороны искомого треугольника будут в два раза меньше данного ,а  это соответствует числам:15см,20см ,30см
4,5(88 оценок)
Ответ:

Рассмотрим сечение конуса через вершину, перпендикулярное основанию.

Получится равнобедренный треугольник с углами у основания по 45 градусов и равными боковыми сторонами по 8 см.

Так как два угла треугольника-сечения известны (по 45), то можно посчитать оставшийся угол = 180 - 45 - 45 = 90. Следовательно, треугольник прямоугольный.

Диаметр (или 2 радиуса) основания конуса будет равен основанию прямоугольника (то есть неизвестной пока стороне. По совместительству, эта сторона будет являться гипотенузой.

По теореме Пифагора, гипотенуза равна корню квадратному из суммы квадратов катетов. То есть \sqrt{ 8^{2} + 8^{2} } = \sqrt {64 + 64} = \sqrt{128} = 8 \sqrt{2}

8

2

+8

2

=

64+64

=

128

=8

2

Мы нашли гипотенузу сечения, а следовательно и диаметр конуса.

Диаметр = 2 радиусам. Т.е. радиус = 4 \sqrt{2}4

2

Формула объёма конуса:

V = \frac{1}{3} \pi r^{2} hV=

3

1

πr

2

h

Осталось найти высоту.

Из вершины треугольника-сечения опустим высоту. Она попадёт прямо на середину его основания, т.е. поделит его пополам. Эта высота образует прямоугольный треугольник, где высота и радиус конуса будут катетами, а образующая конуса - гипотенузой.

Найдём по теореме Пифагора высоту:

h = \sqrt{8^{2} - (4\sqrt{2})^{2}} = \sqrt{64 - 32} = \sqrt{32} = 4 \sqrt{2}h=

8

2

−(4

2

)

2

=

64−32

=

32

=4

2

Подставляем в формулу объёма конуса всё найденное:

V = \frac{1}{3} \pi r^{2} h = \frac{ \pi * (4 \sqrt{2})^2* 4 \sqrt{2} }{3} = \frac{ \pi *128 \sqrt{2} }{3}V=

3

1

πr

2

h=

3

π∗(4

2

)

2

∗4

2

=

3

π∗128

2

Если у вас \piπ приравнивается к 3, то тройки сократятся и сотанется только 128 \sqrt{2}128

2

4,6(81 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ