Неважно, какой из углов будет обозначен 1. По теоремам об углах, образованных двумя параллельными прямыми и секущей:
1. Если две параллельные прямые пересечены секущей, накрест лежащие углы равны.
2. Если две параллельные прямые пересечены секущей, то соответственные углы равны.
3. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Следовательно, образуются 4 угла одной величины, 4 угла другой величины, и их сумма равна величине развернутого угла. (На рисунке приложения отмечены равные углы) ∠1+∠2=180° По условию ∠1 меньше ∠2 на 40° ⇒ ∠2=∠1+40°; ⇒ ∠1+(∠1+40°)=180° откуда ∠1=70°
Примечание: Если один из углов, образованных параллельными прямыми и секущей равен 90°, то все остальные углы равны ему.
Тогда в прямоугольном треугольнике (одном из четырех, на которые делится ромб диагоналями) квадрат гипотенузы (сторона ромба) равен сумме квадратов катетов (половин диагоналей). То есть 10² = Х² + (Х+2)², откуда Х²+2Х-48=0.
Решаем квадратное уравнение. Х = (-2±√(4+4*48)):2 = (-2±14):2 = 6. (Х - половина меньшей диагонали!)
Итак, диагонали равны 12см и 16см.