В трапеции три стороны могут быть равны только боковые стороны и верхнее основание, а диагональ при этом может быть равна только нижнему основанию.
Пусть мы имеем трапецию АВСД с равными сторонами АВ=ВС=СД и диагональю АС = АД.
В трапеции ∠САД=∠ВСА, а так как в данном случае АВ=ВС, то ∠ВАС=∠ВСА. Отсюда находим, что диагональ АС - биссектриса угла А, а так как трапеция равнобедренная, то ∠САД = (1/2)∠А = (1/2)∠Д (1). Треугольник АСД равнобедренный, поэтому ∠Д=∠АСД. В этом треугольнике ∠САД = 180°-2∠Д (2). Приравняем уравнения (1) и (2): (1/2)∠Д = 180°-2∠Д, ∠Д = 360° - 4∠Д, 5∠Д = 360°, ∠Д = 360°/5 = 72°.
Объяснение:
х боковая сторона
х+3 основание
х+х+х+3=48
3х=45x
x=45/3=15 боковая сторона
х+3=15+3=18 основание