В основаиях у этой пирамиды - КВАДРАТЫ. В любом осевом сечении получится равнобедренная трапеция, и наименьшая площадь у нее будет, если основания этой трапеции имеют наименьшую длину. В квадрате отрезок, соединяющий точки противоположных сторон и проходящий через центр квадрата, имеет наименьшую длину, если соединяет середины противоположных сторон, то есть сечение проходит через середины противоположных сторон оснований, и основания равнобедренной трапеции в осевом сечении РАВНЫ СТОРОНАМ КВАДРАТОВ В ОСНОВАНИИ.
Стороны оснований равны 6*корень(2) и 14*корень(2), их полусумма 10*корень(2), поэтому высота пирамиды 60/(10*корень(2)) = 3*корень(2).
А боковая сторона заданного осевого сечения является апофемой боковой грани. Она находится страндартным образом - опускается перпендикуляр из вершины малого основания на большое, получается прямоугольный треугольник с катетами 3*корень(2) и (14*корень(2) - 6*корень(2))/2 = 4*корень(2), поэтому боковая сторона осевого сечения равна 5*корень(2),
Находим площадь боковой грани. Она равна 10*корень(2)*5*корень(2)/2 = 50,
Поэтому полная поверхность имеет площадь = 72 + 392 + 4*50 = 664
Площадь равна Sabcd=(BC+AD)/2*H=(BC+2BC)/2*H=3/2*BC*H=90. Треугольники ВКС и АКD подобны по трём углам.
ВС/AD=1/2. То есть отношение высот этих треугольников=1/2. Тогда отношение высоты треугольника ВКС к высоте трапеции АВСD равно h/H=1/3.
Площадь ВКС равна Sbkc=1/2*BC*h=1/2*BC*(1/3*H)=(3/2*BC*H)*1/3*1/3=90*1/9=10. треугольники BLM и АКД подобны по трём углам.
Коэффициент подобия ВМ/AD=1/4. Тогда отношение высоты треугольника BLM к высоте трапеции =1/5. Площадь BLM=1/2*BM*h=1/2*(1/2BC)*(1/5*H)=(3/2*BC*H)*1/10*1/3=90*1/30=3.
находим площадь треугольника MNC=3. И из подобия треугольников MNC и AND. Тогда SkLMN=SBKC-SBLM-SMNC=10-3-3=4.