По теореме Пифагора найдем второй катет Он равен корень квадратный из 81-36= 3 корень квадратный из 5. Пусть проекция одного катета равна х, а второго 9-х.Высота опущенная из прямого угла прямоугольного треугольника делит данный треугольник на два прямоугольных треугольников. По теореме Пифагора найдем высоту из одного прямоугольного треугольника h=36-x^2. Теперь эту же высоту найдем из второго треугольника, так как эта высота является общей стороной двух прямоугольных треугольников. h=45-(9-x)^2. приравняем и получим уравнение:
36-x^2=45-81+18x-x^2
18x=72
x=4 (проекция одного из катетов)
9-4=5(проекция второго катета)
Теперь найдем высоту прямоугольного треугольника по теореме Пифагора: h= корень квадратный из 36-16= корень квадратный из 20=2 корень квадратный из 5
Так как AD = BD, треугольник ABD - равнобедренный, значит, по определению, углы DAB и DBA равны.
Так как DC = BC, треугольник DBC равнобедренный, значит, по определению, углы CDB и CBD равны.
Так как треугольник АВС по условию равнобедренный, углы DAB и DCB равны.
Углы ADB и CDB в сумме имеют 180°, так как их стороны образуют прямую АС, а угол CDB равен сумме углов DAB и DBA как внешний угол по отношению к треугольнику ABD.
Тогда ∠CDB = 2∠DCB = ∠CBD, и 2∠DCB + 2∠DCB + ∠DCB = 5∠DCB = 180°, откуда ∠DCB = 180:5 = 36°.
∠DAB = ∠DCB = 36°, и, наконец, ∠АВС = ∠CBD + ∠DBA = 2∠DCB + ∠DCB = 3*36 = 108°.
Углы треугольника АВС равны 108°, 36° и 36°
ответ: 108°, 36° и 36°