Пусть треугольники не равны. Отсюда следует, что одновременно. Иначе треугольники были бы равны по первому признаку.
Пусть Δ A1B1C2 – треугольник, равный Δ ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1B1. По предположению вершины C1 и C2 не совпадают. Пусть D – середина отрезка C1C2. Треугольники A1C1C2 и B1C1C2 – равнобедренные с общим основанием C1C2. Поэтому их медианы A1Dи B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой C1C2. A1D и B1D имеют разные точки A1 и B1, следовательно, не совпадают. Но через точкуD прямой C1C2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.
Тогда в треуг ABH угол B=30 (т.к. А=60 H=90)град лежит катет равный половине гипотенузы, т.е АВ=5
Рассмотрим треуг АВС., одна сторона которого =3, другая 5, угол между ними 120 (30+90)
По теореме косинусов АС²=5²+3²-2*3*5*Cos120
AC²=25+9+0.5*30=49
AC=7
2. Найдем площадь ромба через площадь треугольника АВД по формуле Герона
p=(13+13+24)/2=25
S=√p(p-a)(p-b)(p-c)=√(25-13)(25-13)(25-24)=5*12=60
Тогда площадь ромба 60*2=120
Есть еще формула для площади ромба
S=h*a
120=h*13
h=120/13≈9.23