а)Так как Площадь сечения - энто треугольник. Причем равнобедренный, причем с вершиной равный 60 градусов. Значит равносторонний треугольник. Так как основание - диаметр конуса и равна соответственно 12 как и все остальные стороны. Вроде была там формула какая-то про площадь равностороннего треугольника, но я ее не вспомнил, поэтому ну ее =) Опускаем из вершины высоту. Длинну энтой высоты обозначим за Х. Второй катет есть равен 6 И гипотенуза равна 12 Тогда Х = SQRT (108) т.е. корень квадратный из 108. Дальше множим эту высоту на диаметр и делим на два (так как треугольник). В итоге получим что площадь равна 18 SQRT (3) Под б) Честно говоря забыл как вычислять площадь кругового сектора поэтому поступим по хитрому =) Зная что площадь ВСЕГО конуса вычисляется по формуле S1 = пR(R + L) Где R - радиус основания, а L образующая вычислим плозадь всего и отнимим от нее площадь основания (жесть так делать конечно =) ), которое вычисляется соответственно по формуле S2 = п R^2 S1 = п 6 (6 + 12) = 108 п S2 = п 6^2 = п 36 S = 72 п
Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
Вроде была там формула какая-то про площадь равностороннего треугольника, но я ее не вспомнил, поэтому ну ее =)
Опускаем из вершины высоту. Длинну энтой высоты обозначим за Х. Второй катет есть равен 6 И гипотенуза равна 12 Тогда Х = SQRT (108) т.е. корень квадратный из 108.
Дальше множим эту высоту на диаметр и делим на два (так как треугольник). В итоге получим что площадь равна 18 SQRT (3) Под б)
Честно говоря забыл как вычислять площадь кругового сектора поэтому поступим по хитрому =)
Зная что площадь ВСЕГО конуса вычисляется по формуле S1 = пR(R + L) Где R - радиус основания, а L образующая вычислим плозадь всего и отнимим от нее площадь основания (жесть так делать конечно =) ), которое вычисляется соответственно по формуле S2 = п R^2
S1 = п 6 (6 + 12) = 108 п
S2 = п 6^2 = п 36
S = 72 п