Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
∠ABC + ∠ACB = 180° - α
∠IBC + ∠ICB = (180° - α)/2 = 90° - α/2 (т.к. центр вписанной окружности лежит в точке пересечения биссектрис)
∠BIC = 180° - (∠IBC + ∠ICB) = 180° - 90° + α/2 = 90° + α/2
∠BKC = 180° - ∠BIC = 180° - 90° - α/2 = 90° - α/2 (сумма противоположных углов четырехугольника вписанного в окружность равна 180°)
∠BOC - центральный углу ∠BKC => ∠BOC = 2*∠BKC = 2*(90° - α/2) = 180° - α
т.к. ∠BAC + ∠BOC = α + 180° - α = 180°, то около ABOC можно описать окружность, но это та же окружность, которая описана около треугольника АВС и на ней лежит точка О. Что и требовалось доказать
ответ: доказано.