Могут ли две прямые иметь две точки пе- ресечения? Объясните ответ. Для проверки правильности линейки при- меняют такой . Через две точки с по- мощью линейки проводят линии. Затем линейку переворачивают и через те же точки снова проводят линию. Если пинии не совпадают, то линейка непра- сильная. На каком свойстве прямых ос- сован этот проверки правильности инейки?
Дано:
ABCD-трапеция
ВС=8 см
AD=14 см
Найти среднюю линию?
Решение:
Построим отрезок MN-средняя линия трапеции
MN=(BC+AD) /2= (8+14)/2= 22/2= 11 см.
ответ: 11 см.
А2.
Дано:
ABCD-трапеция
Прямая a || CD
∠ABE = 75°, ∠A = 40°.
Чему равен ∠CBE=?
Решение:
По условию задачи прямая a || CD и проходит основания в точках В и Е => получили треугольник АВЕ, где ∠ABE = 75°, ∠A = 40°. Вычислим ∠AЕВ = 180°-(75°+40°)=180°-115°=65°.
Так как ВС || AD и прямая a пересекает их, то прямая а - секущая => ∠AЕВ =∠CBE=65° - внутренние накрест лежащие углы.
ответ: ∠CBE=65°